مشخصات پژوهش

صفحه نخست /Bounds for the regularity of ...
عنوان Bounds for the regularity of edge ideal of vertex decomposable and shellable graphs
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها edge ideals, vertex decomposable, shellable complex, Castelnuovo-Mumford regularity, projective dimension
چکیده In this paper we give upper bounds for the regularity of edge ideal of some classes of graphs in terms of invariants of graph. We introduce two numbers $a'(G)$ and $n(G)$ depending on graph $G$ and show that for a vertex decomposable graph $G$, $\reg(R/I(G))\leq \min\{a'(G),n(G)\}$ and for a shellable graph $G$, $\reg(R/I(G))\leq n(G)$. Moreover it is shown that for a graph $G$, where $G^c$ is a $d$-tree, we have $\pd(R/I(G))=\max_{v\in V(G)} \{\deg_G(v)\}$.
پژوهشگران سمیه مرادی (نفر اول)، داریوش کیانی (نفر دوم)