مشخصات پژوهش

صفحه نخست /Principal component ...
عنوان Principal component analysis-artificial neural network and genetic algorithm optimization for removal of reactive orange 12 by copper sulfide nanoparticles-activated carbon
نوع پژوهش مقاله چاپ‌شده در مجلات علمی
کلیدواژه‌ها Adsorption Copper sulfide nanoparticles Activated carbon Modeling, Artificial neural network Reactive orange 12
چکیده In this study a green approach described for the synthesis of copper sulfide nanoparticles loaded on activated carbon (CuS-NP-AC) and usability of it for the removal of reactive orange 12 (RO-12). This material was characterized using instruments such as scanning electron microscopy (SEM) and X-ray diffraction (XRD). The effects of variables were optimized using Principal component analysis-artificial neural network (PCA-ANN). Fitting the experimental equilibrium data shows the suitability of the Langmuir isotherm. The small amount of proposed adsorbent (0.017 g) is applicable for successful removal of RO-12 (RE > 95%) in short time (31.09 min) with high adsorption capacity (96.9 mg g−1)
پژوهشگران M.Ghaedi (نفر اول)، A.M.Ghaedi (نفر دوم)، F.Abdi (نفر سوم)، M.Roosta (نفر چهارم)، رضا صحرائی (نفر پنجم)، علی دانش فر (نفر ششم به بعد)