عنوان
|
Sortable simplicial complexes and $t$-independence ideals of proper interval graphs
|
نوع پژوهش
|
مقاله چاپشده در مجلات علمی
|
کلیدواژهها
|
sortable,simplcial complex
|
چکیده
|
We introduce the notion of sortability and $t$-sortability for a simplicial complex and study the graphs for which their independence complexes are either sortable or $t$-sortable. We show that the proper interval graphs are precisely the graphs whose independence complex is sortable. By using this characterization, we show that the ideal generated by all squarefree monomials corresponding to independent sets of vertices of $G$ of size $t$ (for a given positive integer $t$) has the strong persistence property, when $G$ is a proper interval graph. Moreover, all of its powers have linear quotients.
|
پژوهشگران
|
یورگن هرزوگ (نفر اول)، فهیمه خوش آهنگ قصر (نفر دوم)، سمیه مرادی (نفر سوم)، معصومه رحیم بیگی (نفر چهارم)
|