Herein, we present a highly efficient dual-functionalized acid−base nanocatalyst, denoted as Fe3O4@GLYMO-HEPES, featuring sulfuric acid and tertiary amines as its dual functional components. This catalyst is synthesized through the immobilization of 4-(2-hydroxyethyl)- 1-piperazineethanesulfonic acid (HEPES) as the source of these functionalities onto magnetite (Fe3O4) using 3-glycidoxypropyltriethoxysilane (GLYMO) as a linker. Characterization studies confirm the integrity of the Fe3O4 core, with the GLYMO-HEPES coating exhibiting no phase changes. Furthermore, Fe3O4@GLYMO-HEPES nanoparticles demonstrate a uniform size distribution without aggregation. Notably, the catalyst exhibits remarkable stability up to 200 °C and possesses a saturation magnetization value of 31.5 emu/g, facilitating easy recovery via magnetic separation. These findings underscore the potential of Fe3O4@ GLYMO-HEPES as a versatile and recyclable nanocatalyst for various applications. Its catalytic ability was evaluated in the synthesis of various pyrano[2,3-c]pyrazoles and 2-amino-3-cyano-4H-chromenes through a tandem Knorr−Knoevenagel−Michael−Thorpe− Ziegler-type heterocyclization mechanism, using different aldehydes. A wide range of fused heterocycles was synthesized having good to excellent yields. The process is cost-effective, safe, sustainable, and scalable, and the catalyst can be reused up to five times. The prepared catalyst was found to be highly stable and heterogeneous and showed good recyclability.