2025 : 9 : 29

Saeid Taghavi Fardood

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Basic Science
Address:
Phone:

Research

Title
Green synthesis and characterization of NiFe2O4@ZnMn2O4 magnetic nanocomposites: An efficient and reusable spinel nanocatalyst for the synthesis of tetrahydropyrimidine and polyhydroquinoline derivatives under microwave irradiation
Type
JournalPaper
Keywords
green synthesis, magnetic nanocomposites, microwave irradiation
Year
2023
Journal APPLIED ORGANOMETALLIC CHEMISTRY
DOI
Researchers Farzaneh Moradnia ، Saeid Taghavi Fardood ، Ali Ramazani

Abstract

In this study, for the first time, NiFe2O4@ZnMn2O4 magnetic nanocomposites (MNCs) were synthesized using a simple green sol–gel method. The synthesized nanocomposites comprehensive characterized using various analytical techniques including X-ray Photoelectron Spectroscopy, powder X-ray diffraction (XRD), transmission electron microscope, field emission scanning electron microscopy, energy dispersive X-ray analysis, vibrating sample magnetometer, Brunauer Emmett Teller, and elemental mapping. XRD confirmed the spinel crystal structure of NiFe2O4@ZnMn2O4 MNCs. ZnMn2O4 has tetragonal spinel structure while NiFe2O4 cubic. In microwave-assisted tetrahydropyrimidine and polyhydroquinoline derivative production, NiFe2O4@ZnMn2O4 MNCs showed good catalytic activity. An external magnet can remove catalyst from reactions, and their efficacy stays stable after four cycles.